
Image Colorization with GANs and Image Captioning

Ivan Villa-Renteria
Stanford University

Stanford, CA
ivillar@stanford.edu

Tom Starshak
Stanford University

Stanford, CA
starshak@stanford.edu

Ruben Rodriguez Buchillon
Stanford University

Stanford, CA
coconutruben@cs.stanford.edu

Abstract

Image colorization has gained notoriety due to its
promise to colorize photos from the past, when camera tech-
nology was too underdeveloped to feature color in pictures.
However, it remains a hard problem largely because it is
under constrained, and hard to formulate mathematical in-
terpretations of what a good colorization is after a cer-
tain point. There have been many approaches aiming to
tackle this problem, such as text-based networks and di-
verse colorization networks. We propose a method which
combines both by using both image captioning and GANs
to colorize grayscale images. In this report we outline why
our proposed method yielded poor results, why the standard
metrics of the problem space - peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM) - are inade-
quate after a certain point of colorization quality, and finish
by proposing a focus on the sub-problem of color vibrancy
and segmentation as a possible avenue to tackle quantifi-
able colorization improvements.

1. Introduction
Image colorization is a difficult problem because it is

under constrained; multiple image colorizations can cor-
respond to the same grayscale image. When an image is
depleted of its color channels and mapped into a grayscale
channel, there is a loss of chromatic information. Previous
approaches to colorization almost always produced desatu-
rated colorizations [15]. However, there has been an emer-
gence of multiple deep learning approaches in computer
vision to tackle this task, ranging from different strategies
and architectures, such as plain networks, user-guided net-
works, domain-specific networks, and other methods which
are covered more in detail in [1].

Fundamentally, the problem can be split into a quantifi-
able part and a perceptive part. While it’s easy to detect
very poor colorization approaches, such that yield unnatu-
ral colors, or bleed colors across edges in the image, after
a certain quality, common metrics stop being informative,

and people’s perception of the images starts to play a larger
role. This is illustrated easily in the domain of objects that
can justifiably have a multitude of colors. This limitation
has led to multiple papers [1][13] to use a human test to
judge naturalness of color, rather than mathematical (and
differentiable) approaches.

However, there are formulations that allow us to gener-
ate at least very plausible colorizations, albeit with some
drawbacks. One approach of interest that has been ex-
plored is the use of GANs as a technique for image col-
orization via diverse colorization; the goal here is to gener-
ate different colorized images, rather than just just restore
the original color. More specifically, GANs attempt to gen-
erate colorizations adversarially, wherein the Generator at-
tempts to fool the Discriminator with generated colors, and
the Discriminator tries to correctly differentiate between the
ground-truth and generated colorizations.

In addition, another approach that is of interest is the use
of text-based colorization; in these networks, deep learn-
ing models are able to colorize images based on text in-
puts, alongside image inputs. One example of this ap-
proach is given in [4], where the authors employ an existing
language-agnostic architecture to provide captions as addi-
tional input.

Our approach aims to combine both GANs and caption-
ing in order to achieve superior colorizations of grayscale
images. We feed images and their captions to our model,
which contains a GAN, and then output a colorization.

2. Related Work

In [4], the authors employ an architecture called FCNN
which takes images as input; it is an architecture composed
of eight blocks, each of which is a sequence of convolu-
tional layers followed by batch normalization. In addition
to this, the caption text t is encoded into a continuous repre-
sentation h by using the last hidden state of a bi-directional
LSTM. Let Zn be the nth convolutional block of FCNN.

1

They then compute two vector γn and βn:

γn = Wnγh,

βn = Wnβh,

where Wnγ and Wnβ are learned weight matrices. They
modify FCNN by modulating the resulting feature maps of
the convolution blocks by computing

Z′ni,j = (1 + γn)� Zni,j + βn.

This newly constructed architecture is denoted as FILM.
Meanwhile, in [13], the authors implement a GAN that

takes 224 x 224 x 1 CIE Lab colorspace images as input
where the only channel that is fed to the GAN is the lumi-
nance channel, and outputs a 224 x 224 x 2 image, where
the two channels correspond to the predicted chrominance
channel elements in the CIE Lab color space of the original
image . More specifically, an RGB image is converted into
CIE Lab color space, fed to the GAN to generate an out-
put, the input and output are concatenated so that each loca-
tion has all three corresponding channels, and said image is
then converted back in to RGB color space. The network’s
Generator contains a pretrained VGG-16 model which then
splits into two tracks, one which produces a class distribu-
tion vector, and another which produces chrominance in-
formation. Both branches are then fused by concatenating
the output features and then a single branch of Conv-Relu
layers with up-sampling in between follows, predicting the
chrominance channels of the input image. The discrimi-
nator takes either a ground truth image or a reconstructed
image, predicts whether it is a true image or a generated
image.

The Loss function is based on discriminator and gener-
ator loss, the loss based on how the colors of the gener-
ated image differ from the ground truth, and a loss based
on whether class prediction matches what VGG-16 would
predict. Loss function is sum of the three terms.

The total loss is formulated as

L = Le + γgLg + γsLs,

where Le is the color error loss, Lg is the WGAN loss, and
Ls is the class distribution loss. γg and γs are weight terms
for the WGAN loss and class distribution loss, respectively.

3. Problem Statement
Our work is closely related to the problem of image col-

orization; take a color image and remove all color informa-
tion, leaving only the color channel; how do we colorize the
image such that it is as close to the original color image as
possible? A formulation of this problem can be rewritten as

Ig = Φ(Irgb),

where Φ(·) is a function that converts an RGB image Irgb
to a grayscale image Ig.

In our work we relax the problem statement above by in-
troducing text information that accompanies the grayscale
image Ig . Our proposed method receives a grayscale image
Ig and a text caption t accompanying the image as inputs,
and outputs a colorized image in RGB color space. Essen-
tially, we attempt to create a mapping Ψ such that

Îrgb = Ψ(Ig, t),

where Îrgb is a colorized image that attempts to be as close
to Irgb as possible. The metrics of similarity in question
that our work will be using are peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM), which are
discussed in further detail in Section 4.3.

4. Methods

4.1. First Baseline Approach

We built a very simple baseline to get an understanding
of the dataset, the challenges in the space, and understand
evaluation metrics.

The first baseline, baseline0, takes the MS-COCO [3]
dataset, and retrieves a correspondence mapping from gray
scale to RGB color channels. It calculates for each chan-
nel the average color that produced a given gray-scale tone.
This produces aMCx256 matrix where each column indexes
the gray value from the pixel of the image, and each row in-
dexes the color channel for the prediction output.
This baseline is simplistic, but allows us to get an initial un-
derstanding of issues that can arise, and how we can classify
good and bad color mappings, and build out basic tooling.
This baseline limits itself to producing one color prediction
(one per channel) for each pixel from the gray scale image,
considering the gray tone value only. To see why this very
frequently fails, consider that that standard mapping [6] to
gray scale is

Y = 0.299R+ 0.587G+ 0.144B

For the majority gray tones, there are a large number
of original 3 channel combinations that it could have
originated from, whereas this approach limits itself to
always choosing the same one.

4.2. Experimental Models

Our approach can be summarized as starting from the
ChromaGAN implementation as a reference, and building
up onto it with the aim of reaching the model architecture
described in the previous section.

2

4.2.1 Model A

The reference ChromaGAN implementation [14], ported to
tensorflow 2, and adjusted to run on a distributed TPU sys-
tem. This required solving migration problems, to use ten-
sorflow gan [7] implementations of the losses, and refor-
matting the model to drop the a combined model of dis-
criminator and generator in favor of an explicit generator
and discriminator.

4.2.2 Model A.2

An iteration on Model A, that replaces the Weissman for-
mulation of losses, with a binary cross entropy loss [8] for
the discriminator and generator loss portions. It maintains
the KLD loss for the class distribution, and the MSE loss (vs
the ground truth color) for the generato . This implementa-
tion was used to attempt to move beyond training instability
with the Model A implementation.

4.2.3 Model B

An evolution on Model A, to see the impact of captions,
rather than class labels. This version takes as input cap-
tions in addition to the images. Those get embedded into
a 50 dimensional caption word vector, and transformed and
reshaped to the same size as an image channel (224x224),
then added to the first layer of the generator (so the first
layer of convolutions learns how to weigh and embed them).
This formulation removes the class labels, both generation
in the generator, generation of the ground truth from a pre-
tained VGG model, and their loss contribution in the gener-
ator loss.

4.2.4 Model C

This model combines the text captioning approach detailed
in [4] and the GAN with supplemental information ap-
proach from [13] fully.

We plan to combine both approaches by implementing
the affine modulation computation from FILM into the con-
volution layers of the Generator network in ChromaGAN.
Please see Section 2 for details on the transformation. This
gives the model multiple entry points to weave the LSTM’s
output into the hidden layers, allowing it to learn at which
point in the CNN funnel that information is most useful.
This model uses the same loss calculation from the Chro-
maGAN paper which was stated above, except that the class
distribution loss is replaced by the LSTM’s classification
loss across the entire caption.
This model again has two sub flavors, (1) whether to go
through the LSTM caption generation based on the col-
orized ground-truth, or (2) the grayscale representation.

Model C.2 being effective would show that previous for-
mulations were not extracting enough context from the
grayscale if only trained against the colors and/or class la-
bel, and that more contextual information to make better
colorizations can be retrieved when training against their
objectives explicitly.

This model was unfortunately not implemented.

4.3. Metrics

In addition to the mean squared error (MSE) of the
colors, we also decided to use peak signal to noise ratio
(PSNR) and structural similarity index measure (SSIM) as
metrics to evaluate the colorization.
This is motivated in part by the metrics being ubiquitously
used in the literature [1].
PSNR allows us to understand how much (potential) noise
the model is adding in an attempt to get edges or individual
pixels right, while SSIM helps weigh the error in a percep-
tual sense - weighing things differently depending on tex-
ture and luminance of an area to quantify the impact of the
mistakes on perceived error.
Both are common metrics used in image compression eval-
uation as well [2] and one could re-frame colorization as a
(poor) compression and de-compression process.

5. Dataset
We used the MS-COCO dataset [3] because it has cap-

tions. We originally tried to use ImageNet, but it is not
captioned. The dataset has multiple images sizes. The
initial implementation of the baseline takes random crops,
while the ChromaGAN [13] implementation uses a resiz-
ing method. In the end we ran with the resizing method
to keep results comparable, though Section 7.1 offers some
thoughts on the potential impact this might have had espe-
cially on classification and object detection.
Notably, we do not process the images to remove the mean
image initially, as we worry that might compromise the abil-
ity to pick up the color distributions, which is exactly what
we care about.
Further, we note that the ChromaGAN implementation
works with class labels, while MS-COCO does not provide
class labels, but rather captions for the images. This is how-
ever not an issue, as ChromaGAN uses a pretained VGG-16
as the ’oracle’ of correct labels, and thus the objective is for
the generator pipeline to learn to get as close to the pre-
trained VGG-16 outputs as it can. This architecture tweak
is what allows the model to be flexible and accept a wide
variety of color image datasets.
The 2017 MS-COCO dataset provided us with 118K test
images, and a validation and test set. For captions we chose
one of the human captions for each image as the reference
caption in a one-time pre processing to generate the vocab-
ulary. We took the 231N formulation from Assignment 3

3

exp0 exp1 exp2
MSE 444.81 454.17 473.35
SSIM 0.9318 0.9397 0.9385
PSNR 24.73 24.28 24.39

Table 1: Mean metrics for baseline experiments - (model
that only returns mean colors)

PSNR SSIM
23.39 0.902

Table 2: Mean Imagenet-trained ChromaGAN metrics

Spring 2021, and created a vocabulary with 1500 words, re-
placing others with an < UNK > token.

6. Experimental Results
6.1. Baseline

The data from the baseline experiments can be found in
Table 1. This information helps highlight that even a very
naive baseline can achieve high SSIM and PSNR scores.
Further discussion on the impact of those metrics can be
found in Section 7.5

6.2. Reference ChromaGAN

The reference ChromaGAN implementation pretrained
on Imagenet was used to colorize grayscale MS-COCO im-
age in order to observe what a high quality colorization
model should produce. When colorizing the MS-COCO
test set, it achieved moderate PSNR and SSIM values, in
line with our other results, but never achieved the PSNR
values (25dB) cited in the ChromaGAN paper.

While the metrics for the Imagenet-trained model and
our models that were trained from scratch on MS-COCO are
similar, the colorization itself seemed much better for the
Imagenet-trained model, which influenced our belief that
PSNR and SSIM, while wildly used, are inadequate to com-
pare colorization schemes after a certain quality bar. This
seems to start in the 0.9 range for SSIM, and 22+dB for
PSNR, at which point other formulations need to be used
and developed to distinguish colorization quality.

A ChromaGAN trained from scratch on MS-COCO is
able to extract some color information, green for plants, and
blue for sky are common results, but in general the output
was muted.

The ChromaGAN paper claimed to gain better coloriza-
tion results when they included semantic information, that
is they made a class prediction on the image. We found that
leaving off the class prediction head of the GAN yielded
higher PSNR and SSIM values than including it.

(a) ground truth (b) model output

Figure 1: Example image from ChromaGAN pretrained on
Imagenet. Note the model was not able to distinguish be-
tween mulch and grass, and the desaturated (faded) Frisbee
color.

Figure 2: Example colorization output from ChromaGAN
trained from scratch on MS-COCO

There is some indication that continued training would
yield better results; PSNR and SSIM values increased after
each epoch, up to 10 epochs, but computational constraints
precluded training to a sufficient level.

6.3. Our Models

Fundamentally, we were unable to reach the perfor-
mance of the ChromaGAN paper with our formulation
(model A) and distributed training. The original formula-
tion and code runs for 8h/epoch on a standard GPU on the
MS-COCO 2017 dataset.

As mentioned in Section 4.2 our reformulation made ex-
perimentation possible due to TPU hardware. This made
running an epoch in 15 minutes possible, however, the re-
sults are poor as shown in Section 6.3. The Model A, Model
A.2, and Model B formulations all produced very unsta-
ble training, quickly reducing the loss for both generator
and discriminator, before diverging, and often not converg-

4

Figure 3: Training metrics for the reference ChromaGAN
with and without classification head up to 10 Epochs.

name model epochs best epoch
exp3 Model A 1 n/a
exp4 model A 5 1
exp5 model A.2 5 4
exp6 model B 10 8

Table 3: experiments on own models overview

exp3 exp4 exp5 exp6 exp5.d
MSE 0.0081 0.0078 0.0067 0.0088 2.788
SSIM 0.919 0.921 0.925 0.913 0.527
PSNR 23.28 22.21 22.57 23.32 0.349

Table 4: experiments on own models key metrics

ing again. Model B produced the most stable formulation,
though it often required 10 epochs to get to meaningfully
small loss formulations (0.7 for the discriminator, 10.3 for
the generator). As shown in Section 6.3 even those formu-
lations do not guarantee meaningful colorizations.

The reported results in Table 4 are on the test set, with
the weights from the best epoch (as described in Table 3).
Please also note that while the MSE below is with respect to
a floating point scale (values are taken to be between 0 and
1.0 in RGB), in the baseline0 they are with respect to 8bit
255 values, accounting for the large amplitude difference.
Note that exp5.d is the same experiment as exp6, but with
the worst epoch (and losses) chosen rather than the best.
This is to highlight the divergence once the discriminator
becomes too good at distinguishing outputs, and the gen-
erator loss starts continuously increasing. (as with Figure
6)

Our formulation produced mostly one of two categories
of outputs - conservative, barely colorized images (Figures
4, 5) or hyper-saturated images (once the generator started
diverging, Figure 6). Notably, the metrics (PSNR, SSIM)

original gray model_a.2

Figure 4: Model A.2 validation set images. L: original, M:
gray scale, R: predicted. PSNR(22.1), SSIM (0.923) (bot-
tom image)

original gray model_b

Figure 5: Model B validation set images. L: original, M:
gray scale, R: predicted. PSNR(22.3), SSIM (0.911) (bot-
tom image)

are reasonably good on the barely colorized images. This
is something we observed in our toy baseline as well. So
it seems that our formulations all run into the same issue -
the generator is quickly punished when trying to add color,
which in turn leads to almost non-existent colorization in
stable cases.

As Figure 5, and the data in Table 4 show, these results
held true even when changing the formulation of the GAN,
or changing the supplemental data being fed in from a class
label, to an embedded caption. The lack of meaningful
colorizations meant that we could not explore the impact
of model B properly, or saw any benefit in implementing
model C flavors, as it would likely have run into the same
issues.

5

original gray model_a.2.div

Figure 6: Model A.2 validation set images, generator
had diverged. L: original, M: gray scale, R: predicted.
PSNR(1.32), SSIM (0.43) (bottom image)

6.4. Hyper parameters

In addition to the model changes, we used two Adam
optimizers, with a learning rate of 2 ∗ 10−5 and a beta1
of 0.9 (ChromaGAN uses 0.5). The change is motivated
by the distributed system learning in parallel and then fus-
ing the results together again. Some experiments were also
conducted with a learning-rate of 2 ∗ 10−5 ∗ 8 (the num-
ber of parallel batches), though this showed similar results.
Batch size was 256, with 32 images per TPUv2 core (8
cores per system). All experiments on our own models ran
for 5 epochs, on the entire training set. The degree of in-
stability in the training, and lack of meaningful results in-
dicate that at least on our own distributed formulation, the
hyper-parameters around updates (learning rate, betas, steps
before applying gradients) need to be tuned much more,
though the experimental overhead here made that difficult
(see Section 7.2). Additionally, the results on the refer-
ence ChromaGAN contrasting pretained ImageNet weights
with Xavier initialized weights show that potentially our
distributed formulation would have produced stable, more
colorful results, if run for many more epochs (e.g. 100
epochs, to 150 epochs, to roughly cover the same number
of images looked at as ImageNet with 10 - 15 epochs).

7. Discussion
7.1. Dataset impact

While we had few meaningful results with our own
model formulations, the baselines we ran on the reference
implementation of ChromaGAN with MS-COCO showed
worse results and colorizations after 10 epochs than the pa-
per. These results fall below the quality (PSNR) of the re-
ported results in the paper, both the ChromaGAN and Chro-
maGAN without classes formulations. The size of MS-
COCO (≈ 1

10 of the ImageNet images used) might be par-

tially to blame here. There is some indication that a com-
bination of dataset size and variance plays a key role as us-
ing the pretained ImageNet weights produced better outputs
than scratch training on MS-COCO, even with the same
epoch length.
Additionally, we observe that resizing on MS-COCO might
lead to significant distortions, and might make learnt shapes
and patterns for colorization less meaningful. While we did
not get to experiment on this, a subsequent step would be to
contrast the model with selective crops rather than resized
images.

7.2. TPU pipeline optimization

While the speedups on the TPU pipeline where impres-
sive, the model still spent 73% of the time idle, waiting for
the next batch of data. The lowest hanging improvement
is optimizing the TPU pipeline and moving towards poten-
tially a larger batch size on TPUv3. This would allow for
simpler iteration on hyper-parameters. Notably, the data re-
trieval overhead on the cloud TPU was so large, that using
a small dataset (1/10 or 1/5 of the original dataset) lead to
insignificant speedups (only 2x faster epochs), and thus pro-
vided a barrier to quick experimentation on hyper parame-
ters.

7.3. GAN approach tradeoffs

We note that the failure of most of our experiments hints
at the known issue [9] of GANs being problematic to train
and how easy it is for the discriminator to quickly become
so good, that the generator can no longer meaningfully
learn. This raises the question of whether GANs for this
space are the right approach to begin with. Putting aside
training stability, it’s not obvious that the large amounts of
freedom in the GAN formulation are necessary for plausible
colorizations, nor that the discriminator is discriminating in
meaningful ways the perceived color quality. While espe-
cially the discriminator could also be adjusted to account for
segments and saturation (as explored in Section 7.6 for the
generator), it might be more stable, and quicker to iterate
on a simpler, deep CNN network, than forcing this problem
statement into the GAN model.

7.4. Impact of input formulation

The ChromaGAN paper formulates the problem as a 1
channel to predict 2 additional channels problem. Lumi-
nance is fed in, and the color channels are retrieved. How-
ever, in practice, and with our implementation too, the ac-
tual supply to the generator is a 3 channel image with 3
greyscale channels stacked. This is to accommodate the
pretained VGG formulation for the classification learning.
We observed that on our ’good’ (read - non-failed) results,
an average of 82% of pixels are the same across all 3 chan-
nels (in RGB space) - thus producing the grey results we

6

see. We suspect that potentially the initial feed of 3 iden-
tical channels might contributing to the GAN in most of
our cases producing outputs that barely color. In the results
we saw that the MSE is very low for a grey image com-
pared to the correctly colored ground-truth, and grows very
large when the generator tries to color (and fails, as our data
on the generator divergence shows). Thus this formulation
might be giving the generator too strong a prior hint on what
the other two channels might need to look like, and might
be negatively impacting learning.

7.5. SSIM and PSNR metrics quality

Furthermore, we note that in our experiments, both
with our toy baseline, our models (model A, model A.2,
model B), as well as the pertained, reference implementa-
tion of ChromaGAN, PSNR (and SSIM, though not used
in the ChromaGAN paper) are an imperfect metric after
a point. Namely, once SSIM reaches the high 90s, and
PSNR reaches the 22+dB, we notice that they fail to cor-
relate strongly with perceived (our own perception) image
colorization quality (or ground truth MSE for that matter).
So we conclude that that while they can be helpful metrics,
they usage should be constraint to differentiating between
models that produce ‘credible’ results and models that fail
to colorize properly (e.g. our model A once the generator
starts diverging). They fail to be a highly informative metric
once that threshold is passed, and motivate the formulation
of more expressive metrics.

7.6. Vivid colors as a loss, explicit segmentation

In our experiments, and in the literature[13][1], we no-
tice that after the point of credible colorization, one of the
main obstacle is capturing realistic ‘vivid’ colors, rare col-
ors, and capturing colors for objects that plausibly can have
multiple color distributions. When analyzing the images,
and their respective metrics, we notice that images tend to
suffer when generic pieces take over the majority of the im-
age - e.g. beaches, lawns, fields, skies. Note Figures 1, 2
outputs in particular. In those cases, a failure to saturate or
even color components is easily averaged out in losses and
metrics. This leads us to think that the next step should be
exploring explicit segmentation in the pipeline, and satura-
tion of the colors in the segments. By forcing the model to
segment, classify, and then colorize objects, we could ex-
plicitly punish a faded colorization of an object on a natu-
rally unsaturated background - e.g. the tail-lights on the car,
or the Frisbee in those examples. This could be formulated
as another loss component, or replace the current formula-
tion in ChromaGAN of the MSE loss with respect to the
original image. Naturally, segmenting and learning small
features like the tail lights come with its own computation
and resolution concerns in an already computationally tax-
ing pipeline, which might further motivate moving towards

a simpler formulation of the colorization generation back-
bone.

8. Conclusion
In conclusion, we were unable to reproduce the quality

of the ChromaGAN paper in our implementation, and also
suspect that the dataset, and length of training might have
played a role in even the reference implementation of Chro-
maGAN on our dataset performing worse than the paper’s
reported results. There are a multitude of areas where the
system might be improved and experimented with, though
we suspect that the most promising approach to the inter-
esting problem of color vibrancy and bleeding of surround-
ing colors would be to take a simpler model, and build a
pipeline that explicitly encodes a notion of color vibrancy
and explicitly segments the images.

9. Contributions

Name Contributions
ivillar@ Captioning understanding

Model C design
starshak@ ChromaGAN baseline local and GPU results

ChromaGAN PSNR, SSIM experiments
ChromaGAN 5 epoch MS-COCO experiment

rubenr2@ baseline0 experiments
Model A(.2), Model B experiments
TPU acceleration and cloud experimentation

combined dataset and pre-processing pipeline
MS-COCO 2017 vocab generation
report and presentation

10. Acknowledgements
We leveraged Colab and Google Cloud for experimen-

tation extensively. Additionally, we leveraged the Chroma-
GAN GitHub [14] reference to conduct experiments on the
reference, and serve as a starting point for our own varia-
tions on it. We also used Google’s tutorials on TPUs and
distributed learning [12], on a basic GAN implementation
[10], and on image processing on tensorflow [11] as starting
point for our implementations. We also leveraged the open
implementations on tensorflow gan [7] for the Wasserstein
loss formulations. Lastly, we leveraged the GitHub refer-
ence for learning to color from language [4] [5] to under-
stand how to implement the captioning layers.

7

References
[1] Saeed Anwar, Muhammad Tahir, Chongyi Li, Ajmal Mian,

Fahad Shahbaz Khan, and Abdul Wahab Muzaffar. Im-
age colorization: A survey and dataset. arXiv preprint
arXiv:2008.10774, 2020. 1, 3, 7

[2] Alain Horé and Djemel Ziou. Image quality metrics: Psnr
vs. ssim. In 2010 20th International Conference on Pattern
Recognition, pages 2366–2369, 2010. 3

[3] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.
Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
COCO: common objects in context. CoRR, abs/1405.0312,
2014. 2, 3

[4] Varun Manjunatha, Mohit Iyyer, Jordan Boyd-Graber, and
Larry Davis. Learning to color from language. arXiv preprint
arXiv:1804.06026, 2018. 1, 3, 7

[5] Varun Manjunatha, Mohit Iyyer, Jordan Boyd-Graber,
and Larry Davis. Learning to Color from Language
- Github. https://github.com/superhans/
colorfromlanguage, 2018. [Online; accessed 21-May-
2021]. 7

[6] opencv. Miscellaneous Image Transformations. https://
docs.opencv.org/2.4/modules/imgproc/doc/
miscellaneous_transformations.html#, 2019.
[Online; accessed 10-May-2021]. 2

[7] Joel Shot. TensorFlow GAN support package. https:
//github.com/tensorflow/gan, 2020. [Online; ac-
cessed 25-May-2021]. 3, 7

[8] Google TensorFlow. TensorFlow Binary Cross Entropy
Loss implementation. https://www.tensorflow.
org / api _ docs / python / tf / keras / losses /
BinaryCrossentropy, 2021. [Online; accessed 20-
May-2021]. 3

[9] Google TensorFlow. TensorFlow GAN problems.
https://developers.google.com/machine-
learning/gan/problems, 2021. [Online; accessed
28-May-2021]. 6

[10] Google TensorFlow. TensorFlow GAN tutorial. https://
www.tensorflow.org/tutorials/generative/
dcgan, 2021. [Online; accessed 26-May-2021]. 7

[11] Google TensorFlow. TensorFlow Image tutorial. https:
//www.tensorflow.org/tutorials/images/
classification, 2021. [Online; accessed 20-May-
2021]. 7

[12] Google TensorFlow. TensorFlow TPU tutorial. https://
www.tensorflow.org/guide/tpu, 2021. [Online;
accessed 24-May-2021]. 7

[13] Patricia Vitoria, Lara Raad, and Coloma Ballester. Chroma-
gan: An adversarial approach for picture colorization. CoRR,
abs/1907.09837, 2019. 1, 2, 3, 7

[14] Patricia Vitoria, Lara Raad, and Coloma Ballester. Chroma-
GAN github implementation. https://github.com/
pvitoria/ChromaGAN, 2019. [Online; accessed 21-
May-2021]. 3, 7

[15] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In European conference on computer
vision, pages 649–666. Springer, 2016. 1

8

https://github.com/superhans/colorfromlanguage
https://github.com/superhans/colorfromlanguage
https://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html##
https://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html##
https://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html##
https://github.com/tensorflow/gan
https://github.com/tensorflow/gan
https://www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy
https://www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy
https://www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy
https://developers.google.com/machine-learning/gan/problems
https://developers.google.com/machine-learning/gan/problems
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/images/classification
https://www.tensorflow.org/tutorials/images/classification
https://www.tensorflow.org/tutorials/images/classification
https://www.tensorflow.org/guide/tpu
https://www.tensorflow.org/guide/tpu
https://github.com/pvitoria/ChromaGAN
https://github.com/pvitoria/ChromaGAN

