DeepDeMix: Music Source Separation via Contrastive
Pretraining

Ivan Villa-Renteria
Department of Computer Science
Stanford University
ivillar@cs.stanford.edu

1 Introduction

We propose the use of supervised contrastive pretraining for the task of music source separation.
Music source separation is a particular case of audio source separation, where given a mixture of
audio signals from different sources, we wish to recover the individual source signals [1]. Here, the
mixed audio signals sources are musical instruments. Music source separation is of particular interest
in artificial intelligence, music signal processing, and music information retrieval (MIR) because
it allows music artists to recover individual music instrument recordings from musical tracks and
manipulate them to enhance the tracks or create novel music. Moreover, the results from music
source separation can be used for other downstream tasks such as automatic music transcription and
sorround sound generation. We hypothesize that the use of supervised contrastive learning, [2] which
is often used to learn useful representations for downstream tasks, can be applied to music source
separation.

2 Related Work

Usual deep learning models for music source separation consist of an encoder, a separation module,
and a decoder [1]]. The encoder takes as input the signal mixture and generates an appropriate
encoding for it. The separation module then computes a mask to apply to the mixture signal’s
encoding; this allows us to obtain the encoding corresponding to the source we’d like to separate
from the mixture. The decoder then attempts to reconstruct the source signal from the encoding
obtained from the separation module after applying the mask. Spectrogram-based models apply a
Fourier Transform to obtain a fixed time-frequency encoding, whereas waveform-based models learn
the encoding and decoding alongside the separation module in an end-to-end manner.

MMDenseLSTM [3] is a spectrogram-based model which combines DenseNet and an LSTM module.
This model manages to outpeform previous attempts at music source separation using DenseNet and
LSTMs separately, while reducing the total number of parameters used. Waveform-based models in
the field take inspiration from Conv-TasNet [4]], speech separation model which consists of a linear
layer to learn encodings from for the encoder, Temporal Convolutional Networks (TCN) for the
separation module, and final linear for the decoder. This model achieved an SDRi score of 13.4 dB,
outperforming previous waveform-based speech separation models. Other attempts have been made
at deep learning models combining both spectrogram and waveforms. [3]] [6].

Supervised Contrastive Pretraining is a procedure in which some sort of model that outputs represen-
tations for datapoints is trained on a dataset in order to strengthen the quality of said representations.
[2] This is done with labelled data, which is leveraged to push representations of the same class
together and representations of other classes apart. This procedure is done in order to warm-start

CS230: Deep Learning, Spring 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

the parameters of another model used for downstream tasks, and has seen success in the fields of
computer vision and NLP[7]].

3 Dataset

3.1 Raw Data

The dataset we are using is the MUSDB18 [8] dataset. It consists of 150 full-length music tracks with
an average track length of 236 seconds with a standard deviation of 95 seconds, totalling to around
10 hours of full/stereo music data. Moreover, the datasets are each split into 84 songs in the training
set, 16 songs in the dev set, and 50 songs in the test set, and all songs are accompanied with their
isolated "drums", "bass", "vocals", and "others" tracks. The .stem.mp4 files are encoded at 44.1Hz.
For convenience purposes, this baseline model is currently trained on a version of MUSDB 18 where
each track is a 7-second preview.

We used the audio source separation library nuss1[9] and code from a music source separation
tutorial[[10] to convert each .stem.mp4 file to spectrograms for the mixture signals and the source
signals. These signals were converted into spectrograms using Short-time Fourier Transform.

3.2 Data Augmentation

Since the 7-second version of the MUSSB 18 dataset we were using didn’t have an adequate amount
of training data, we used data augmentation to generate new samples of data by engaging creating
new coherent mixes of the original training data. These coherent mixes were generated by perturbing
the instrumental source histograms of each piece slighty; the equivalent of 6,000 new training and
300 new validation examples were generated via this method. Each new mixture was 5 seconds in
length.

4 Methods

We trained a baseline model, and a DeepDeMix model (described below) on spectrograms. We then
performed supervised contrastive learning on a DeepDeMix encoder, which was then used to train
another DeepDeMix model.

D(E(X))
= mask /

BidirectionalLSTM, Embedding,
—X- AmplitudeToDB BatchNorm hidden_size =50 > num_sources = 4,
num_layers = 1 activation = sigmoid

Ll Loss <~—Y

L1_Loss

L
- e ~<>-{: *)
U

(a) Baseline model (b) DeepDeMix autoencoder model

Figure 1: Model architectures explored

4.1 Baseline Model

The attempt at a baseline model takes as input data audio spectrogram data in the shape of
(m,ng, ng, Nae, Sin), and outputs predictions in the shape of (m, 1, Ny, Nac, Sout), Where m is
the batch size, n s is the number of frequency bins in the spectrogram, n; is the number of time hops
(time duration bins) in the histogram, n,. is the number of audio channels, s;,, is the number of
sources that the model accepts for each training example, and s, is the number of sources that
the model outputs per training example. In this case, s;, = 1 because our model takes as input
training examples where all of the instruments are merged into a single mixture (i.e. one source).
Moreover, s,ut = 4 because our model is attempting to reconstruct the signal sources from four
different instruments, (i.e. four sources).

Our model implementation makes use of nuss1 modules (which are based in PyTorch) for source
separation. The data goes through an nuss1l AmplitudeToDB module, which converts magnitude
spectrograms to log amplitude spectrograms in decibels. Next, the data undergoes a batchnorm
layer. After this, the data is then fed to a bidirecitonal LSTM with a hidden state size of 50 and
2 layers (num_layers set to one results in two LSTM layers when implementing a bidirectional
LSTM). After this, the output of the bidirecitonal LSTM is fed to an nuss1 embedding layer, which
in practice acts as a linear layer with sigmoid activations at the end, resulting in an output of size
(m, ng, g, Nae, Sout. This output is a mask, which is then multiplied element-wise with the input

to produce the output Y, the model’s attempted reconstructed the input. This is a broadcast matrix
multiplication, producing a final model estimate of size (m, n¢, n fsMacs Sout)-

4.2 DeepDeMix Model

DeepDeMix (Figure 1b) follows an encoder-decoder arthicecture. The encoder takes data in the shape
of (m,n¢,ny,sin), and outputs predictions in the shape of (m, 1y, ny, Nac, Sout). Data of shape
M, N, Nf, Nae, Ne) 18 reshaped to (m, ng, ny, n.) before being fed to DeepDeMix. This can be done
because s;,, = 1. This time, however, instead of using a bidirectional LSTM, the encoder uses 2
(Conv2D, ReLU, Conv2D, ReLU) blocks, followed by (MaxPool2D, Dropout) blocks. After this,
the resulting representation is then reshaped into a vector which is then fed to two (Linear, ReL.U,
Dropout) blocks, and then finally fed to a single linear block to obtain a latent representation. See
Figure 2 for more information.

Once this intermediate representation is obtained, it is then fed to the decoder (Figure 2b) to two
(Linear, ReLU) blocks to get a 576-dimensional representation. This representation is then reshaped
into a (4, 12, 12) shape, and fed to two (Conv2D, ReL.U, Upscale) blocks. After this, the data is
fed into a (Conv2D, Sigmoid) block to obtain a shape of (m, sgut, 1, 1 f), and then reshaped to
(m,ng,n £y e, Sout). Mask multiplication takes place in the same way as the baseline model.

5 Conv2D |

. Input 16 fiters,

AmplitudeToDB > o malization Kernel = 8, 16)
padding = ‘same"

. TN -
32 filters,

(1724 x 257 x 16) el (8 16) (1724 x 257 x 32, \ J
padding = "same"

Tam4x257x1)

4filters,
Conv2D Conv2D kernel = (3, 3)
padding ="same”

107x64x30> | Safilers, 107x64x 64> | 12O,

Conv2D

padding ='same’ padding = 'same’
L N 4filters,
Kernel = (4,6
Conv2D
4filters,
EX)____ kernel = (8, 16)
[—— padding = "same"

(a) Encoder model (b) Decoder model

(4x 1724 257)“

Sigmoid (—(4 x 1724 x257—> Reshape }»

mask
(n24x257x1x4) >

Figure 2: DeepDeMix encoder and decoder archictures

4.3 DeepDeMix Encoder Contrastive Pretraining

We also used a DeepDeMix model where the encoder portion was separately trained on a self-
supervised contrastive learning task. We train the encoder on batches of (anchor, positive, negative)
samples, where the anchor and positive samples are spectrograms of the same instrument in different
songs, and the negative sample is the spectrogram of a different instrument in any of the songs. For
this, we fed the encoder batches of data of size (m,n:, ny, nac, 3). The last integer in the tuple
denotes the number of sources that correspond to an anchor, positive, and negative example in a given
batch. The outputs are in the shape (m, 3, 125). The middle 3 in this tuple also corresponds to an
anchor, positive, and negative example. The goal of this model is to get the vector representations of
the anchor an positive example close to each other and the representations of the anchor and negative
examples away from each other relative to some distance metric.

4.4 Loss

We used L1 Loss evaluated on the computed reconstructions of the instrument histrograms and ground
truth instrument source spectograms in order to train the baseline model and DeepDeMix models.
L1 loss has been found to outperform other loss metrics for magnitude spectrogram matching [[11]
and is a common loss function in the music source separation literature. For the pretraining task, we
evaluated the encoder by using Triplet Margin Loss, defined for a single (anchor, positive, negative)
pair as:

L(aap7n) = maX(Ha_le - Ha_nHl +O[,O),

where a is the vector representation of the anchor, p is the vector representation of a positive example,
n is the representation of a negative example, [is a norm, and « is a margin hyperparameter.

5 Results

5.1 Evaluation Metrics

We evaluated the results of our baseline, DeepDeMix, and pretrained DeepDeMix using both Scale-
to-Distortion Ratio (SDR) and Scale- Invariant Signal-to-Distortion ratio, or SI-SDR. SI-SDR is a
modification of SDR (Signal-to-Distortion ratio), a measure of the log ratio of the volume of the
source projection onto the ground truth, and the volume of what is orthogonal to this projection. SDR
is calculated by:

|Istarget||”
+ €noise + €artif | ‘2 ’

SDR = 10log;, eimors

where 5i4,.¢e¢ 18 a version of the clean source signal modified by an allowed distortion, and €;,¢er £,
€noise, aNd €qr4; ¢ are errors due to interferences, noise, and artifacts, resepectively.[12]

SI-SDR is given by the following:

2T

|| §'s 8”2
SI-SDR = 101log, [—IF"7
AT

where § is the estimate signal and s is the target. This metric overcomes some critical failures of
SDR; it cannot be tweaked artificially by just changing the scale of the estimation, making it robust
to scaling.[[13] For both SI-SDR and SDR, the higher the values, the better.

5.2 Hyperparameters

When converting the audio waveforms into spectrograms, we performed a Short-time Fourier Trans-
form, with the number of time hops set to n; = 1724, and number of frequency bins set to ny = 257.
We trained the baseline model for for 30 epochs with a batch size of 16. For the pretraining task, we
trained the encoder for 40 epochs with a batch size of 16. The two DeepDeMix model variations
were trained for 45 epochs each with batch sizes of 16. We used an Adam optimizer with a learning
rate of 0.001 and /31 of 0.9 and S5 of 0.999. for all models. For the pretraining task, we used a norm
of I = 2 and a margin o = 1.0 for the triplet margin loss function.

5.3 Model Results

Experiments show that the baseline model achieves poor performance in music source separation on
both the training dataset and testing dataset. However, there are improvements in the DeepDeMix
model without pretraining. Moreover, there are improvements in the DeepDeMix model with
pretraining in both SI-SDR and SDR metrics. We can see that pretrained DeepDeMix achieves a 0.44

SDR SI-SDR
Overall | Bass | Drums | Other | Vocal | Overall | Bass | Drums | Other | Vocals
Baseline Train | -1.47 1.63 | -2.12 -3.28 | 1.04 -1.88 -1.60 | -3.05 -3.66 | 0.78
Test -2.01 292 | -1.24 342 | -041 | -2.14 -3.00 | -1.66 -3.87 | -0.03
DDM Train | 1.23 1.53 | 1.48 1.72 2.93 1.03 1.34 | 1.38 1.58 -0.2
Test 0.98 094 | 1.37 1.25 0.29 0.71 090 | 1.28 1.05 -0.37
DDM Train | 1.52 2.12 | 1.90 1.91 1.48 1.41 1.96 | 1.23 1.79 0.67
(pt) Test 1.42 2.01 1.24 1.59 1.24 1.20 1.86 | 0.92 1.37 0.65

Table 1: SDR and SI-SDR metrics

SDR and 0.49 SI-SDR point increase when it is pretrained on MUSDB18 training data. However,
these models are still a cry away from the state of the art results presented by models such as Hybrid
Demucs [5], which achieves an average SDR of 7.68. Conv-TasNet achieves an average SDR of 5.73

[4].

Contrastive Learning Loss Curve (Training Set)

Iy =
S) [N]

e
©

Triplet Margin Loss
o o
IS o

°
N}

4
=

0 10 20 30 40 50 60 70
Iteration Number

Figure 3: Loss curve for encoder pretraining task

Figure 3 shows the triplet margin loss curve for the pretraining task on the encoder on the training
dataset. This, along with the score increase on the pretrained DeepDeMix network, serve as evidence
that the encoder learns useful and rich representations for the spectrograms that serve as inputs.

6 Discussion

All of the models do worse on MUSDB than current state-of-the-art models. Looking at the results
presented in the previous section, it is clear that the weakest model was the baseline, since it suffered
from both bias and variance issues. It’s highly likely that the model did not have the representational
capacity to capture the data distribution of MUSDB18.

Although the results achieved by the experiments are underwhelming compared to the state of the
art, these experiments validate the hypothesis that contrastive learning is a useful technique in the
task of music source separation. This is evidenced by the loss curve that the encoder achieved in the
pretraining task, along with the improved performance that DeepDeMix achieved after pretraining
the encoder.

7 Next Steps

From the experiments it has become evident that contrastive pretraining improves model performance
on music source separation. Moving forward, our goal becomes to increase the scores that were
achieved in the experiments. We propose the use of the pretraining task on more sophisticated model
architectures such as Hybrid Demucs or Conv-TasNet. We also suggest pretraining on additional
music source separations datasets in order to obtain higher quality embeddings. Additional model
architecture experimentation is also highly recommended. Finally, we suggest the use of different
contrastive pretraining regimes which make use of multiple postive and negative exmaples per anchor,
such as those explored in [2].

8 Project Code

The code for this project can be found in https://github.com/ivillar/DeepDeMix.

9 Contributions

Ivan Villa-Renteria is the sole person working on this project. We would like to acknowledge Elaine
Sui, our assigned mentor, for giving us guidance throughout the duration of the project, especially for
suggesting strategies to incorporate contrastive pretraining.

References
[1] Alexandru Mocanu. Musical source separation. Technical report, 2020.

[2] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning, 2020.

[3] Naoya Takahashi, Nabarun Goswami, and Yuki Mitsufuji. Mmdenselstm: An efficient combina-
tion of convolutional and recurrent neural networks for audio source separation. In 2018 16th
International Workshop on Acoustic Signal Enhancement (IWAENC), pages 106—110, 2018.

[4] Yi Luo and Nima Mesgarani. Conv-TasNet: Surpassing ideal time—frequency magnitude
masking for speech separation. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 27(8):1256—-1266, aug 2019.

[5] Alexandre Défossez. Hybrid spectrogram and waveform source separation, 2021.

[6] Minseok Kim, Woosung Choi, Jachwa Chung, Daewon Lee, and Soonyoung Jung. Kuielab-
mdx-net: A two-stream neural network for music demixing, 2021.

[7] Nils Rethmeier and Isabelle Augenstein. A primer on contrastive pretraining in language
processing: Methods, lessons learned and perspectives, 2021.

[8] Zafar Rafii, Antoine Liutkus, Fabian-Robert Stoter, Stylianos Ioannis Mimilakis, and Rachel
Bittner. The MUSDB 18 corpus for music separation, December 2017.

[9] Ethan Manilow, Prem Seetharaman, and Bryan Pardo. The northwestern university source
separation library. Proceedings of the 19th International Society of Music Information Retrieval
Conference (ISMIR 2018), Paris, France, September 23-27, 2018.

[10] Ethan Manilow, Prem Seetharman, and Justin Salamon. Open Source Tools & Data for Music
Source Separation. https://source-separation.github.io/tutorial, 2020.

[11] Enric Gusé. On Loss Functions for Music Source Separation. PhD thesis, Universitat Pompeu
Fabra, August 2020.

[12] E. Vincent, R. Gribonval, and C. Fevotte. Performance measurement in blind audio source
separation. IEEE Transactions on Audio, Speech, and Language Processing, 14(4):1462—1469,
2006.

[13] Jonathan Le Roux, Scott Wisdom, Hakan Erdogan, and John R. Hershey. SDR - half-baked or
well done? CoRR, abs/1811.02508, 2018.

	Introduction
	Related Work
	Dataset
	Raw Data
	Data Augmentation

	Methods
	Baseline Model
	DeepDeMix Model
	DeepDeMix Encoder Contrastive Pretraining
	Loss

	Results
	Evaluation Metrics
	Hyperparameters
	Model Results

	Discussion
	Next Steps
	Project Code
	Contributions

